Fibre Optic Sensing Technology and Applications in Wind Energy

Sandia Blade Workshop 2008 14-05-08

Phil Rhead

maximising turbine performance

Presentation Contents

- Introduction to Insensys Limted
- Insensys Technology
- System Overview and Key Components
- Verification and Reliability
- Application 1 Test and Measurement
- Application 2 Individual Pitch Control
- Application 3 Rotor Condition Monitoring
- Summary

Introduction to Insensys maximising turbine performance insensys

Insensys Introduction - Company Overview

insensys
Wind Energy

- Founded in 2002
- 40 staff across 3 offices located in the UK
- Focussed on 2 key market areas
 - Wind Energy
 - Aerospace
- Oil and Gas division sold to Schlumberger in 2007
- World class engineering skills
 - Fibre optics
 - Composite design
 - Composite manufacture

Insensys Introduction

- Wind Energy Applications & Market Status

insensys Wind Energy

Focus

Supply advanced load measurement technology to the Wind Turbine Industry enabling improved Wind Turbine performance and reliability

Key Application Areas

- 1) Individual Pitch Control (IPC)
- 2) Rotor Condition Monitoring
- 3) Test and Measurement Applications

Market Experience

- •Insensys system is designed into production turbines between 1.5 and 6 MW with multiple turbine manufacturers
- •Systems are currently being supplied in series quantities
- •System is currently under test in 14 different turbine platforms
- Deployed in blades from 27m to 60m

Insensys Technology
Time Division Multiplexed (TDM)
Sensor Interrogation

maximising turbine performance

insensys

Insensys Technology

- Time Division Multiplexing Schematic

Insensys Technology - Typical System Configuration

Taxa Parties Annual Control of the C

Sensor Arrays installed in the blade (4 per blade)

Optical Interconnection Cables (3 per turbine)

monitoring applications

Insensys Technology - Key Advantages of Fibre

insensys Wind Energy

- Key Advantages of Fibre Optic Sensing

Sensors

- Optical fibre Bragg grating sensors non disruptive to the laminate
- Absolute strain measurement with no drift or de-bonding
- Immune to EMI and lightning effects in blade environment
- Installed during blade build or retrofitted to operational machines
- Sensor quantities, locations and spacing can be custom designed to suit exact turbine dimensions and sensing requirements

Measurement Unit

- Designed specifically for hub environment No moving parts
- High speed & low measurement latency
- +/- 4500 microstrain measurement range
- Low power (3W typical) and low weight (< 3Kg)

Cable System

- IP65 cable system when connected
- All interconnection cables are replaceable by the field service team without the need to recalibration

Slide 9

System Verification & Reliability Testing

maximising turbine performance

insensys

System Verification Testing

Sensors for control or SHM applications must be highly reliable!

Performance Testing

- Sensor patch testing > 45 million cycles of 0 1000 microstrain
- Dynamic coupon fatigue test > 2 million cycles +/- 5000 microstrain range
- Active blade testing 1 x 10⁶ cycles during an active blade tests
- Static blade test sensors used for multiple GL certification tests
- No sensor failures, degradation or de-bonding in any of these tests

Laboratory Testing

- Lightning strike tests, Impact tests
- Environmentally tested to IEC standards Shock, vibration, thermal cycling etc

Design Verification

MTBF in excess of 20 years (from calculation and hours in service)

Product Reliability – In Field Testing

Long term comparisons have been carried our with conventional electrical strain gauges instrumented by DEWI GmbH, WindTest GmbH and Garrad Hassan!

WindTest Grevenbroich DMS Sensor

Insensys FBG Sensor Patch

In Field Testing - Data Comparison

Edgewise Data Sample

Flapwise Data Sample

In Field Testing - Data Comparison (zoom)

Edgewise Data

Flapwise Data

Proprietary Insensys 2008

Sensor Deployment Techniques - Overview

- Many people have proven that bare fibre installation doesn't work!
- Insensys have developed specific deployment techniques for Wind Energy to ensure: accuracy of installation, high yield, reliability and simplicity of installation
- Multiple sensor deployment techniques developed to suit different blade manufacturing processes, materials and applications
- Embedded during blade infusion
- Retrofit to completed blades or assemblies (in-factory / up-tower)
- Blade manufacturing process Pre-preg (including ATL), infusion, hand layup
- Blade materials GRP, CFRP, Hybrids
- All deployment processes
 - utilise standard materials and blade manufacturing processes
 - are designed to minimise intrusion into blade production process

- Retrofit Sensor Installation

- Applied internally or externally
- Applied to shells, spars, webs & root sections
- •Simple customisation of positions
- Standard arrays from stock or fully configurable
- •Standard method for prototype test and measurement applications and blade testing
- •Cost effective for series application in low labour rate countries

- Retrofitted to Shells (Secondary Infusion)

- •Sensor applied to blade LE and TE post shell manufacture
- •Rapid / reliable / low cost installation technique for series production

- Custom Sensor Application (deep install)

- •Custom sensor patch designed for measurement deep inside laminate 30 mm
- •27m long, 13 sensors (tree effect)
- •Installed in shells prior to central belt being installed

- Bonding to Shells (Primary infusion)

- Applied during primary blade infusion
- •Rapid deployment of multiple sensors sensors treated as per any other layer
- •Can be located near blade surface (deep) or near inner skin (shallow)
- •Cost effective for series deployment in high labour rate countries
- •Specific care must be taken when designing connection points!

Applications Overview

- Prototype Turbine and Blade Measurement Campaigns
- Individual Pitch Control
- Structural Health Monitoring
- System designed as modular platform with common architecture
- Enables dual functionality to be achieved

Insensys Technology - Blade Installation Schemes

Test and Measurement - Example Applications

Used for in place of a conventional electrical strain gauge

- Simple installation and connectivity
- Immunity to lightning and EMI
- Highly reliable no de-bonding or sensor fatigue
- Data use for design validation and correlation of loads with FEA models during the turbine design phase

Blade measurements

- On turbine data collection multiple points per blade
- Static proof test
- Dynamic blade test
- Blade subsection / panel test

• Structural component measurements

- Low speed shaft (bending and torsion)
- Tower (bending and torsion)
- Hub casing (strain)
- Gearbox and bedplate (strain)

Test and Measurement

insensys
Wind Energy

- Dynamic Fatigue Test (Time Series Data)

- •Time series data (24 sensors dynamic fatigue test)
- •Generating data is the easy part!
- •Analysis and reporting needs effort and software tools!

Test and Measurement

insensys
Wind Energy

- Dynamic Fatigue Test (Time Series Analysis)

Measured strain profile along a blade at 7 sensor locations and under 3 different load conditions

Test and Measurement - Ultimate Load Test

Measured strain profile along a blade at 15 sensor locations during a static fatigue test

Used during design phase to validate FEA models / design of low speed shaft

Sensor Patch Located on Main Shaft

maximising turbine performance

- Turbines rotors are increasing in size and are being installed on more complex terrains. This is leading to:
 - Increased asymmetric loading across the rotor
 - Increased yaw and tilt moments
 - Due to wind speed and spatial variations (stochastic process)
- Multiple load reduction strategies have been proposed
 - Any successful load reduction strategy must be based on measurements
- Individual Pitch Control can reduce loads significantly!
 - Blade loads typically reduced by 10 20%
 - Main shaft loads typically reduced by 20 30%
 - Reduced tower and yaw bearing loads, particularly with 2P based -IPC
- IPC is already being deployed in series production

Individual Pitch Control - Process Requirements

Collective Pitch Control Loop

Individual Pitch Control Loop

Edgewise and flapwise moment input data

Out of plane moments transformed to non-rotating d-q axes

Non-rotating d-q axis pitch demands

Final pitch demands

Maximum d, q-axis pitch limit

Individual Blade Pitch Control - Example Data

Edgewise and flapwise moment input data

Pitch angles, rotor azimuth, filtering

Out of plane Moments transformed to non-rotating d-q axes

PI control

Non-rotating d-q axis pitch demands

Rotor azimuth,
Collective pitch demand

Final pitch demands

Slide 33

Individual Pitch Control - Hardware Implementation

The load reductions from IPC can be leveraged in multiple ways by a turbine manufacturer;

1) Cost Optimisation

- Turbine's structural components can be designed for lower loads
- Lighter, cheaper parts, reduced transportation and installation cost

2) Modified Wind Class or Installation Conditions

- Increase rotor diameter for higher energy yield
- Installation in more turbulent locations i.e. more densely packed on a wind farm

3) Improved Turbine Reliability

- Utilise improved rotor balancing from IPC
- Reduced loads on blades, bearings, gearbox and drive-train
- Increase MTBF

All options can improve the turbine performance!

Application 3
Structural Health Monitoring

maximising turbine performance

insensys

Structural Health Monitoring

- As it is today!
- A large number of parameters are monitored on modern wind turbines
 - Drive train vibrations
 - Generator oil condition
 - Pitch motor torques / pressures
 - Wind and machine parameters
- Very little if anything is monitoring on the blades or rotor
- Rotor is subjected to:
 - Instantaneous load variations
 - Fluctuating load pattern
 - Frequent peak loads
 - Rotor torque and axial thrust forces
 - Extreme environmental conditions
 - Acts of God!

- Measuring information from the blades can reveal a great deal of additional information about the performance of the turbine that can not be gained from conventional SHM techniques
- Insensys has developed algorithms to provide additional condition monitoring from blade load information that is complimentary to existing information
- Blade strain data can be processed in many different ways to real information about the turbine and blade performance
- Data can be issued to PLC, linked to an existing Condition Monitoring System enabling direct correlation between cause and effect or logged for latter analysis

Structural Health Monitoring - Overview

insensys
Wind Energy

- Blade performance data
 - Strain and bending moments
 - Load histories and extreme loads
- Rotor performance data
 - Imbalance / offset load
 - Tilt moments / Yaw moments
 - Mass / Aerodynamic
 - L/D rations
- Performance history and defect detection
 - Accumulative fatigue and residual lifetime
 - Material Loss
 - Debond / delamination identification
- Lightning Strike Detection
- Blade Icing

Structural Health Monitoring - Lightning Detection and Measurement

- Insensys has developed a fibre-optic lightning detection and measurement system, based on existing architecture
- Measures every lightning strike, on each blade, in real time, providing several key intensity parameters Increases generating revenue by avoiding waiting for unnecessary inspections, and scheduling required inspections
- Allows decision to be taken whether protection system, or blades, likely to have been damaged in strike

- Insensys is developing an ice detection and measurement system, based on existing fibre-optic system architecture
- Key benefits:
 - Enabling safe shutdown, preventing ice throwing
 - Safe, automatic restart
 - Minimising generation loss
 - Avoiding rotor imbalance caused by icing
 - Compliance with latest EU legislation on ice detection

Summary

- Insensys fibre optic instrumentation is a proven, reliable technology for blade strain & load measurement in Wind Turbines
- The benefits of using blade loads sensors for turbine control applications are already well understood
- A number of turbine manufacturers today include IPC in their designs and many others will shortly be following suit.
- Significant additional benefit can be achieved by monitoring the blades loads and correlating the data with the data from the drivetrain monitoring system
- Àdvanced technologies and data processing techniques are being developed toprovide manufacturers and operators with further functionality

What Next?

- Whatever you guys throw at us next......
 - Multipart blades
 - Blades with adaptive flaps / actuators
 - Load shedding blades
 - Next generation IPC
- The sensors are ready!!!!!!

Thanks for listening!

www.insensys.com

phil.rhead@insensys.com

maximising turbine performance

